# kahansum.py
# Author: Alex Gezerlis
# Numerical Methods in Physics with Python (2nd ed., CUP, 2023)
def kahansum(xs):
s = 0.; e = 0.
for x in xs:
temp = s
y = x + e
s = temp + y
e = (temp - s) + y
return s
if __name__ == '__main__':
xs = [0.7, 0.1, 0.3]
print(sum(xs), kahansum(xs))
# naiveval.py
# Author: Alex Gezerlis
# Numerical Methods in Physics with Python (2nd ed., CUP, 2023)
from math import sqrt
def naiveval(x):
return 1/(sqrt(x**2 + 1) - x)
xs = [10**i for i in range(4,8)]
ys = [naiveval(x) for x in xs]
for x, y in zip(xs, ys):
print(x, y)
# compexp.py
# Author: Alex Gezerlis
# Numerical Methods in Physics with Python (2nd ed., CUP, 2023)
from math import exp
def compexp(x):
n = 0
oldsum, newsum, term = 0., 1., 1.
while newsum != oldsum:
oldsum = newsum
n += 1
term *= x/n
newsum += term
print(n, newsum, term)
return newsum
for x in (0.1, 20., -20.):
print("x, library exp(x):", x, exp(x))
val = compexp(x)
# recforw.py
# Author: Alex Gezerlis
# Numerical Methods in Physics with Python (2nd ed., CUP, 2023)
from math import exp
def forward(nmax=22):
oldint = 1 - exp(-1)
for n in range(1,nmax):
print(n-1, oldint)
newint = n*oldint - exp(-1)
oldint = newint
print("n = 20 answer is 0.0183504676972562")
print("n, f[n]")
forward()
# recback.py
# Author: Alex Gezerlis
# Numerical Methods in Physics with Python (2nd ed., CUP, 2023)
from math import exp
def backward(nmax=31):
oldint = 0.01
for n in reversed(range(20,nmax)):
print(n, oldint)
newint = (oldint + exp(-1))/n
oldint = newint
print("n = 20 answer is 0.0183504676972562")
print("n, f[n]")
backward()
# cancel.py
# Author: Alex Gezerlis
# Numerical Methods in Physics with Python (2nd ed., CUP, 2023)
from math import exp, log
def f(x):
return (exp(x) - 1)/x
def g(x):
w = exp(x)
if w==0.:
val = -1/x
elif w==1.:
val = 1.
else:
val = (w-1)/log(w)
return val
xs = [10**(-i) for i in (14, 15, 16)]
xs += [-10**(-i) for i in (15, 16, 17)]
fvals = [f(x) for x in xs]
gvals = [g(x) for x in xs]
for x, fval, gval in zip(xs, fvals, gvals):
print(x, fval, gval)
# chargearray.py
# Author: Alex Gezerlis
# Numerical Methods in Physics with Python (2nd ed., CUP, 2023)
from kahansum import kahansum
from math import sqrt
def chargearray(nvals):
vals = [-0.5 + i/(nvals-1) for i in range(nvals)]
qtopos = {}
for i,posx in enumerate(vals):
for j,posy in enumerate(vals):
count = j + nvals*i + 1
key = 1.02*count if (i+j)%2==0 else -count
qtopos[key] = posx, posy
return qtopos
def vecmag(rs):
sq = [r**2 for r in rs]
return sqrt(kahansum(sq))
def fullpot(qtopos,rs):
potvals = []
for q,pos in qtopos.items():
diffs = [r - po for r,po in zip(rs,pos)]
R = vecmag(diffs)
potvals.append(q/R)
return kahansum(potvals)
if __name__ == '__main__':
qtopos = chargearray(6)
for y in 1,-1:
rs = [0.,y]
potval = fullpot(qtopos,rs)
print(rs, potval)
# legendre.py
# Author: Alex Gezerlis
# Numerical Methods in Physics with Python (2nd ed., CUP, 2023)
import matplotlib.pyplot as plt
def legendre(n,x):
if n==0:
val2 = 1.
dval2 = 0.
elif n==1:
val2 = x
dval2 = 1.
else:
val0 = 1.; val1 = x
for j in range(1,n):
val2 = ((2*j+1)*x*val1 - j*val0)/(j+1)
val0, val1 = val1, val2
dval2 = n*(val0-x*val1)/(1.-x**2)
return val2, dval2
def plotlegendre(der,nsteps):
plt.xlabel('$x$', fontsize=20)
dertostr = {0: "$P_n(x)$", 1: "$P_n'(x)$"}
plt.ylabel(dertostr[der], fontsize=20)
ntomarker = {1: 'k-', 2: 'r--', 3: 'b-.', 4: 'g:', 5: 'c^'}
xs = [i/nsteps for i in range (-nsteps+1,nsteps)]
for n,marker in ntomarker.items():
ys = [legendre(n,x)[der] for x in xs]
labstr = 'n={0}'.format(n)
plt.plot(xs, ys, marker, label=labstr, linewidth=3)
plt.ylim(-3*der-1, 3*der+1)
plt.legend(loc=4)
plt.show()
if __name__ == '__main__':
nsteps = 200
plotlegendre(0,nsteps)
plotlegendre(1,nsteps)
# multipole.py
# Author: Alex Gezerlis
# Numerical Methods in Physics with Python (2nd ed., CUP, 2023)
from kahansum import kahansum
from chargearray import chargearray, vecmag
from legendre import legendre
def decomp(rs,ris):
rmag = vecmag(rs); rimag = vecmag(ris)
prs = [r*ri for r,ri in zip(rs,ris)]
vecdot = kahansum(prs)
costheta = vecdot/(rmag*rimag)
return rmag, rimag, costheta
def multicoes(rs,qtopos,nmax=60):
coes = [0. for n in range(nmax+1)]
for n in range(nmax+1):
for q,pos in qtopos.items():
rmag, rimag, costheta = decomp(rs,pos)
val = q*(rimag**n)*legendre(n,costheta)[0]
coes[n] += val
return coes
def multifullpot(rs,qtopos):
coes = multicoes(rs,qtopos)
rmag = vecmag(rs)
contribs = [coe/rmag**(n+1) for n,coe in enumerate(coes)]
return kahansum(contribs)
if __name__ == '__main__':
qtopos = chargearray(6)
for y in 1,-1:
rs = [0.,y]
potval = multifullpot(rs,qtopos); print(rs, potval)